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ABSTRACT 

To test the primordial power spectra predicted by a double inflationary model 
with a break of amplitude A = 3 at a scale of 27r/lc z lOh-’ Mpc and CDM as 
dominant matter content, we perform PM simulations with 1283 particles on a 
2563 grid. The broken scale invariance of the power spectra explains the extra 
power observed in the large-scale matter distribution. COBEnormalized spec- 
tra and a linear biasing with b M 2 are shown to reproduce the reconstructed 
power spectra from the CfA catalog. Identifying galactic halos with overdensity 
of approximately two times the cell variance, we can fit the angular correlation 
function using both the Limber equation and creating a APM-like angular pro- 
jection with the observed luminosity function. Finally, the higher order moments 
of the galaxy distribution are shown to fit reasonably well the observed values. 

1 Introduction 

Inflationary cosmological models predict that the observable part of the universe is quasi- 
flat, i.e. the total density parameter is ntot ti 1. Combined with the density of baryons 
QMlt = O.O2h’* (h denotes the Hubble constant in units of 100 km s-‘>Ipc-‘) following 
from the theory of primordial nucleosynthesis this requires x-r.ost of matter in the Universe 
to be nonbaryonic. The most elaborate model of structure formation assumes an universe 
dominated by cold dark matter (CDM) with a Harrison-Zeldovich spectrum of initial pertur- 
bations. With a biasing b, M 2 it has successfully explained the observed hierarchy of cosmic 
structures on scales smaller than approximately 10 h -l Mpc. However, recent observations 
seem to indicate that the predictions of the standard CDM model on very large scales and - 
on small scales are incompatible (Efstathiou et al. 1990, Maddox et al. 1990, Fisher et al. 
1993, Saunders et al. 1991, Vogeley et al. 1992). 
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The standard model is based on two assumptions, namely, (1) that the primordial per- 
turbation spectrum generated during inflation is of Harrison-Zeldovich type, and (2) that 
the dark matter, which gives the main contribution to the density of the Einstein-de Sit- 
ter universe, is cold. In order to change the theoretical predictions of this model, one can 
modify either of these assumptions. In the first case, improved inflationary scenarios lead 
to other than Harrison-Zeldovich spectra. In the second case, widely discussed candidates 
for closing the universe are mixed dark matter or a cosmological term. In a recent paper, a 
change of the first type has been investigated (GottlGber, Miicket, Starobinsky 1994). The 
underlying inflationary model shows two consecutive stages of exponential expansion with a 
short intermediate stage of power law expansion (Gottlaber, Miiller, Starobinsky 1991). The 
two driving mechanisms are vacuum polarisation effects and a massive scalar field. In this 
case the resulting power spectra with broken scale invariance (BSI) are of Harrison-Zeldovich 
type only in the limit of very small and very large scales. In the intermediate range they are 
steeper. The spectra are characterized by the ratio A of the power of a Harrison-Zeldovich 
spectrum to the power of the BSI spectrum on small scales assuming both are normalized on 
large scales (COBE normalization). The scale k b denotes the onset of the break in the per- 
turbation spectrum at small scales, i. e. for k > kh the spectrum is of Harrison-Zeldovich 
type. The quantity A mainly depends on the parameters characterising the inflationary 
stages (the mass of the scalar particle and the coupling constant of the higher-order terms), 
whereas kb depends on the energy density of the scalar field at the onset of inflation. The 
best fit to observations is reached with A between 2 and 3 and kc’ in the range between 
lh-’ Mpc and 4h-’ Mpc (GottlGber, Miicket, Starobinsky 1994). In the following we adopt 
A = 3 and kb,’ = 1.5h-’ Mpc. Starting from these spectra, we have performed N-body sim- 
ulations using the particle-mesh code of Kates et al. (1991), extended to three dimensions. 
In this paper we report on the linear and non-linear clustering properties that characterize 
the matter in these simulations. In Section 2 we begin by discussing the spatial correlation 
function and the power spectrum in our simulations. 

One of the most convincing evidence for rejecting the standard CDM model comes prob- 
ably from the angular correlation function (ACF). Even if the information on redshift is lost, 
the angular surveys provide such an enormous amount of data, millions of galaxy positions, 
that they turn out to tightly constrain theoretical models. As it is well known, the ACF 
reported by Maddox et al. (1990) is not matched by the standard CDM model; on angular 
scales larger than two or three degrees, the observed ACF is found indeed to be significa- 
tively larger than predicted by CDM, when CDM is normalized to small scales. One can sas 
that since the publishing of the APM results the minimal requirement for any new model of 
galaxy formation is that the correct ACF be reproduced. In Section 3 we report. the test of 
our model against the observed ACF. 

As we already stated, to match the correlation functions is only a minimal requirement, 
though a very significant one, for a model to be acceptable. In recent years many higher 
order statistical measures of the observed distrib rL?n of galaxies have been discussed and 
calculated. A direct extension of the correlation function are the three- and four-point cor- 
relation functions, thoroughly discussed in literature. Since their estimate is very noisy and 
time-consuming, often some integral version of the n-point correlation functions is computed 
from the data. Particularly simple and interesting are, for instance, the skewness and the 
kurtosis of the count-in-cells (e.g. Coles & Frenk 1991, Saunders et al. 1991, Bouchet et - 
al. 1993, Gaztafiaga 1992, 1994). In Section 4 we derive the higher order moments of our 
simulations, and compare them with the data. Finally, in Section 5 we draw our conclusions. 
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2 Power spectrum and correlation function 

We have performed N-body simulations with 1283 particles in cubes with a 2563 grid. The 
simulations were made with four different box sizes, L = 25h-1 Mpc, 75h-’ Mpc, 200h-’ Mpc 
and 500h-’ Mpc in order to get a resolution high enough to identify the places where galactic 
halos form and, for the same spectrum and with the same method, to model the large scale 
matter distribution (cp. Kates et al. 1994). 

We consider a CDM model (a = 1, H .= 50km/s/Mpc) with the transfer function of Bond 
and Efstathiou (1984) and the primordial perturbation spectra with broken scale invariance 
calculated by Gottlober, Miiller, and Starobinsky (1991). We have normalized the spectra 
with the one year COBE result ~~(10”) = (30&7.5)pK/2.735K (Smoot et al. 1992). The in- 
flationary model we are considering produces a negligible contribution of gravitational waves 
to the microwave anisotropy. The rms multipole values Cl for our perturbation spectrum are 
substantially smaller than for the standard CDM model for 1 > 30 (Gottlober and Miicket, 
1993). We did not include the new analysis presented in Wright et al. (1994) which leads to 
a almost 10 % increase (20% following G&ski et al. 1994) of the large-scale normalization. 
Taking this into account, the biasing factor calculated from the spectra would decrease by 
the same amount. 

The linear analysis of the power spectrum (Gottlober, Miicket, Starobinsky 1994) has 
shown that we need a bias b = 2.18 for transforming structures of dark matter particles 
into luminous matter. The power spectrum one actually computes from a finite size, finite 
resolution simulation is an acceptable approximation of the theoretical one only in a range 
of wavelengths k for which 27r/L < k << 2r/l, where 1 is the cell size and L is the box size. 
Then, to extend the range of validity of the power spectrum, we estimate the true P(k) by 
joining four power spectra for different box sizes (with L = 2561). We take the highest P(k) 
for any value of k, since the effect of both finite size and finite resolution is generally to 
reduce the power amplitude. The reconstructed power spectrum coincides with the linear 
one at very large scales. At scales smaller than k,,, x 0.2h Mpc-’ the BSI model shows more 
power than the linear spectrum and has a slope of k” with n z -1.3. Consequently, also the 
variance at 8 h-’ Mpc increases. Therefore, the biasing factor defined as b = CT;’ decreases. 
From the simulations we found an optimal value of b z 1.7 (instead of the linear 2.18). 

To compare the reconstructed spectrum with the spectrum of the CfA catalogue we 
transform it into redshift space using the Kaiser (1984) and Peacock (1991) corrections. The 
resulting spectrum is shown in Fig. 1, where we have assumed a biasing factor 6 = 1.7. 
For comparison the spectrum of a simulation with the standard CDM spectrum is also 
included in this figure (b = 0.9). Note that in our simulation the highest scale mode (k,;,) 
is overestimated by about 20 % due to the chosen representation of the spectrum in k-space. 
The maximum value of the calculated spectrum would really be at k z 0.0412 Mpc-‘, and 
the spectrum will be bent down at small k’s as it is indicated by the data (though with very 
large error bars). 

We identify galaxies in our simulations by means of the peak-background split formalism. 
Let g2 be the density fluctuation variance on the grid cell of a given simulation, and vg 
the selection threshold: only particles residing in regions with density contrast b > vu 
are identified with galaxies. Also, let < be the correlation function of all particles, and 
&, the correlation function relative to the galaxies. The relation between the linear biasing 
b = (L/t)“* and the threshold v is quite complicated, because it involves the full probability 
distribution of the underlying fields, which is in general unknown. The simple formula given 
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Figure 1: Comparison of simulated power spectra-using initial conditions with broken scale 
invariance and a bias b = 1.7 (solid line), standard CDM model with b = 0.9 (dashed line) 
and data from the CfA catalog (Vogeley et al. 1992). 

in the classical paper by Kaiser (1984) cannot be applied here because it holds only if one 
identifies each region above threshold with a single galaxy, while we put the density field 
in the regions above threshold equal to the underlying density field. Moreover, the Kaiser 
formula holds only for Gaussian field, while the matter clustering is certainly non-Gaussian 
by the present. A biasing scheme closer to ours has been investigated by Catelan -et al. 
(1994), who give the relation b = b(v, a) for a lognormal field, which is known to approximate 
the real density probability distribution; The general trend, at least in the limit of small, 
correlation, is that b increases with increasing u and decreasing B (i.e., increasing the box 
size). As a consequence, in a larger box one has to use a smaller threshold v to get the same 
amplification b. The lognormal relation better approximates our results: to have b M 1.7 in 
a field with CT x 4.5 (relative to the 200 h-’ Mpc box) one needs a threshold u M 2. As 
we will show, with this threshold our model reproduces several observational features of the 
galaxy clustering. 

Finally, we have computed the spatial correlation function from the simulations. Using 
all particles the BSI model yields a slope of 1.6 - 1.7 with a correlation radius of 2h-’ hlpc. 
A biasing procedure as described above changes the slope to 1.7 - 1.8, and the correlation 
radius increases 1” I.’ .5 - 5.5)h-’ ~Mpc (depending on the box length). In our simulation the 
standard CDM model yields a slope of 2.0 which is too steep, while its correlation radius is 
5h-’ Mpc for all particles. In Fig. 2 we present the spatial correlation functions for our BSI 
model. 
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Figure 2: Two-point correlation function in simulations of BSI spectra in the 75 h-’ Mpc 
(dashed line) and 200h-’ Mpc (solid line) box for particles in cells with overdensity Y = 2.1 
and v = 1.8, respectively. 

.- 

3 Th e angular correlation function 

We estimate the angular correlation function in two ways: indirectly, from the power spec- 
trum of the N-body simulation, and directly, performing a projection of the N-body particles 
on a portion of sphere according to the luminosity function (Coles et al. 1993, Moscardini et 
al. 1993). 

From the knowledge of P( Ic), one can derive the ACF ~(0) via the Limber equation: 

@) = so” WW~ so” ?14#2t3vot4/kb 
271-2ts,” Y24tYM/)2 ’ (1) 

where 4(y) = yVom5 exp [ - (~/y*)~] is t h e selection function. Inserting the linear power spectra 
into Eq. (1) and scaling the angular correlation function to the Lick depth (y’ z 240h-’ 
Mpc) one can compare the theoretical predictions with the observational data for ~(0) 
from the APM survey (Maddox et ~2. 1990). However, the use of linear approximation in 
the calculation of ~(0) is justified for large B only. For angles up to 0 N lo”, the agree- 
ment of the theoretical predictions with the data is very good, if spectra with A = 3 and 
k;’ = (l...4)h+ M pc are considered (Gottliiber, Miicket, Starobinsky 1994). The nonlinear 
behaviour can be described by using the power spectra reconstructed from the different boxes. 
As already mentioned on nonlinear scales the slope becomes P(k) cx k-1.3 so that the theo- 
retical angular correlation w(6) matches the observed small-angular behaviour w(0) oc &o.7 
very well as long as the finite cell size of the smallest simulation box does not smear out the 
correlations. The unbiased angular correlation function calculated in this way are shown in - 
Fig. 4a and 4b as dotted lines. In the case of the BSI model the line can be shifted to match 
the data assuming a biasing as introduced above. 
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We have also computed the ACF by projecting the particles onto a spherical surface 
90” wide and estimating w(0) directly from the angular map. The details of this procedure 
have been already given in literature (e.g. Coles et al. 1993, Moscardini et al. 1993), so we 
only sketch the method here. We have calculated the ACF both for all particles and for 
particles selected by a density threshold as reported in Section 2. We have replicated the 
simulation box by reflection in such a way that it covers a cone with opening 90” and depth 
N 600h-r Mpc, so as to reproduce the observational cone of the Lick catalog, to which the 
APM data have been scaled. We need three and eight levels for boxes of L = 200h-’ Mpc and 
L = 75h-1 Mpc, respectively, to contain the Lick cone (we did not consider the smallest and 
the biggest simulations here). We need the replication procedure to get both the necessary 
resolution on small scales and the Lick depth. However, by this method we get also a small 
systematic at B > lo”, as can be seen by testing the procedure with a Poisson distribution. 
Therefore, we have restricted our calculations to 8 < 8”. On small scales we are limited by 
the resolution of the simulations so that we considered only 0 > 0.3”. 

According to the luminosity function we assign an absolute magnitude to each particle 
through a random process. From the distance to the observer, located in the center of the 
‘original’ box, we derive the apparent magnitude m. If m 5 mLi,-l; = 18.4 (see Maddox 
et al. 1990), the particle is projected on the surface. In Fig. 3 we show the corresponding 
distribution of particles assuming a density threshold of 3 particles per cell (see below). Since 
the largest contribution comes from the box in which the observer is situated, and from the 
box directly on top of it, we expect that the effect introduced by the box replication is a 
minor one, at least for not very large separations. To test this, we have also calculated the 
ACF projecting only particles with brighter limiting apparent magnitudes, m.0 = 16.4 and 
mo = 14.4. In this way the characteristic depth D* = dex[-0.4(mo - Af* - 25)] becomes 
much smaller, and the effect of box duplication is greatly reduced. Then, we shift the ACF 
to the Lick scale by means of the scale dependence contained in the Limber equation (see 
e.g. Groth & Peebles 1977, Peebles 1980, Maddox et al. 1990). Our tests have confirmed 
the reliability of the method of replication. 

The estimator we use for the ACF is 

CC 
w(0) = FE - 1, (2) 

where CC is the number of pairs in the real angular catalog at angular separation 8, CR is 
the number of pairs in the crossed real-random catalogs, and F is the ratio of densities of 
the random and the real catalog (F > 1 to reduce the Poissonian noise). The results for the 
discussed models are shown in Fig. 4a (standard CDM model) and 4b (BSI model). The 
squares denote the angular correlation function for all particles. While the standard CDM 
simulation clearly cannot fit the angular correlation function, we find a good agreement with 
the dashed curves calculated from the reconstructed power spectrum. The scattering of the 
d- c ba is due to measurements in different directions and measurements in different simulation 
boxes. 

To introduce biasing in our BSI simulations, we follow the procedure described in Section 
2. For retaining the full spatial resolution we identify galactic halo candidates on the grid by 
imposing discrete thresholds without any smoothing. Assuming a threshold of 3 particles per 
cell (200 h-’ Mpc, a=4.5) or 4 particles per cell (75 h-i Mpc, u = 7.5), and projecting the 
galaxies according to the galaxy luminosity function, we get reasonable angular correlation 
functions in the range of 0.3’ < 0 < 8’ (triangles in Fig. 4b). In comparison with the CDM 
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Figure 3: Angular projection of particles in cells with overdensity v = 2.1. This map should 
be compared with the APM data. 

model, the selected galaxies show clearly the required extra power at separations larger than 
2’. The thresholds correspond to values of u = 2.1 and 1.8 for the smaller and larger box 
sizes, respectively. 

4 Higher-order moments 

If the distribution of galaxies is not Gaussian, the two-point correlation function does not 
fully characterize the clustering properties. Even if the initial distribution was Gaussian, as 
our inflationary model predicts, non-Gaussianity is induced by the nonlinear gravitational 
effects. Indeed, the deviations from Gaussianity can be expanded in a perturbative series of 
the variance of the fluctuation field (Juszkiewicz et a’l. 1993, Kofman SC Bernardeau 1994). 
Theory and observations agree in finding traces of non-Gaussianity up to very large scales, 
where t(r) < 1. 

A particularly simple measure of non-Gaussianity is provided by the higher order mo- 
ments of the counts in cells. Let us denote with n; the number of galaxies in the i-th cell in 
a partition of a given volume in N cells, and with fi its mean. Let pm be the dimensionless 
central moment of order m, CL, =< (ni - fi)” > /fi”‘, and let K, be the corresponding 
dimensionless cumulant (or connected moment). To the first few orders the relation between 
pm and tc, is: tc:! = /12, ~3 = ~3, ~4 = ,u4 - 3~;) etc. (see, e.g., Cramer 1966). For a 
Gaussian field, K, = 0 for m > 2. Since the galaxies are supposed to be a discrete sampling 
of an underlying continuous field, we should subtract from the cumulants the so-called shot- 
noise terms, i.e. the corresponding moments of a Poissonian distribution. This is actually 
just a hypothesis, because the galaxies could be far from being a Poissonian sampling of the 
field, but this is what has been routinely adopted in the data elaboration. In any case, it 
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Figure 4: Comparison of the APM angular correlation function (Maddox et al. 1990, dots) 
with the simulations: a) CDM spectrum (squares); b) spectra with broken scale invariance, _ 
both for all particles (squares) and for the biased particles (triangles). The dashed lines are 
the correlation functions calculated from the Limber equation. 
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should be important only in the limit of very large scales, when the distribution will tend 
to be effectively Poissonian, and of very small scales, when the discrete nature of galaxies 
dominate over the clustering. Let us notice another point about the moment estimators K~. 
It is well known that when the moments of a distribution are evaluated from a sample, they 
are biased estimators of the true moments (see e.g. ‘Cramer 1966). They are good estimators 
only in the limit of N --) 00, if N is the number of independent measures (i.e. the size 
of the sample). We will oversample the simulation box with a large number of randomly 
placed cells (of order lo4 for the smallest cells, down to lo3 for the largest ones), so that 
the l/N correction should not be relevant: however, our cells are clearly not independent, 
so the biasing of the estimators can slightly affect our results (as well as the data) on very 
large scales. 

Generally speaking, the cumulant K, of a fluctuation field filtered through a window 
W(R) with characteristic scale R is related to the n-point reduced correlation function I,, 
via the integral equation 

Km(R) = vim 
I[ fi d3ziW,(zi> 

vR i=l I 
<n(~l, *--Zm) - (3) 

Through Eq. (3), a model for the higher-order correlation functions is reflected in a model 
for the cumulants K,. The most popular of such models is probably the hierarchical scaling, 
according to which any function &, is proportional to products of n - 1 two-point functions 
summed over all possible distinct tree graphs. Then, the following simple scaling relation is 
established among the cumulants IC,,: 

%n = Smtgm, (4) 

where q,,, = m - 1 and where the S, are constants (except for a weak scale dependence 
introduced by the data windowing). On scales much larger than the correlation length of 
the fluctuation field, the scaling relation holds for general random fields at the lowest non- 
trivial order in the variance. It is interesting that it seems to give a fairly good description 
of data down to quite small scales, perhaps even in the strongly non-linear regime (although 
possibly with a different set of S,.,,‘s). On the other hand, higher-order perturbation theory 
in gravitational clustering (along with assumption of initial Gaussianity) leads to a predic- 
tion of the constants S, in the small variance regime, i.e. at large scales (Peebles 1980, 
Juszkiewicz & Bouchet 1992, Bernardeau 1992, 1994). After smoothing, the constants S, 
can be estimated as function of the linear power spectrum. Their value can depend also on 
the bias mechanism (Fry & Gaztaiiaga 1993), and marginally on the redshift space distortion 
(Fry & Gaztaiiaga 1994). 

Observationally, the scaling relation describes the data of several surveys from a few 
megaparsecs to 50h-’ 1lpc and beyond (Saunders et al. 1991; Loveday et al. 1992; Bouchet 
et al. 1993; Gaztaiiaga 1992, 1994). Values for S,,, up to m = 9 are available in literature. 
At large scales they are consistent with the gravitational perturbation theory; the errorbars 
however are quite large, especially for m > 4. In N-body simulations, the agreement with 
the gravitational perturbation theory is very good on large scales, while on small scales the 
effects of finite volume and of discreteness make the results more controversial (e.g. Lahav _ 
1993, Colombi et al. 1993). 

We determined the second, third and fourth order cumulant for our models, in real 
space. We compared the variance/scale relation, the skewness/variance relation and the 
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Figure 5: Higher order moments for the BSI simulation with threshold v z 2 in real space. 
Open circles represent data from the 75 h -l Mpc box, filled circles from the 200 h-’ Mpc 
box. Clockwise from top left: variance VS. scale, compared with the Stromlo-&PM data of 
Loveday et al. (1992) (in this plot and in the following one the errors on our data are smaller 
than the symbol size); skewness VS. variance, compared with the APN data of C’.Z siiaga 
(1994, G94; dashed line); kurtosis us. variance, compared with the results from G94 which 
encompass scales from a few Mpc to 20h-’ Mpc; and scaling coefficients Ss (triangles) and 

’ Sd (squares) vs. variance (open symbols for the small box, filled symbols for the large box). 
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kurtosis/variance relation with the above mentioned observational data, in particular with 
the Stromlo-APM data of Loveday et al. (1992) and the APM analysis of Gaztafiaga 1994 
(G94). The results are plotted in Fig. 5. The errors represent the scatter between eight sets of 

fsZZlection at u 
- lo4 randomly placed cells. The open circles refer to the simulation box of 75 he1 Mpc 

= 2.1), the filled circles to the 200 he1 Mpc box (V = 1.8). The results 
merge one onto the other, from 2 to 50 h- l Mpc, and correctly reproduce the observations. 
However, the hierarchical coefficients Sa, S4 for the small box decline below the ones from 
the large box on the larger scales. This is probably a manifestation of the boundary effects: 
the moments estimated from a simulation with a fixed number of particles are systematically 
smaller than the moments of the parent distribution (Colombi et al. 1993). It is interesting 
to observe that the scaling constants seem to be arranged in a plateau on small (non-linear) 
scales, while they show a continuous decrease on large scales. The decrease is due to the 
fact that the effective slope of the power spectrum increases for large scales. Indeed, in Fig. 
6 we plotted the expected Ss, S4 for top-hat cells from gravitational perturbation theory 
(Bernardeau 1994, scaling the spherical cells to our cubic cells) and compared with the 
results from the matter distribution (i.e., without bias) in the 200 he1 Mpc box, on scales 
from 5 to 50 h” Mpc. The agreement with the simulation results is reasonable in the small- 
variance regime; the residual discrepancy is maybe due to the conversion to cubic cells, and 
to finite-volume effects. 
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5 Conclusions 

This paper reports on the linear and non-linear results of an extensive set of N-body sim- 
ulations with broken scale invariance power spectrum. To our knowledge, this is the first 
N-body simulation with a primordial power spectrum arising from a double inflationary 
model. The results make us believe that this broken scale invariance model is an interesting 
addition to the list of models that help in reconciling CDM with observations. We compared 
our simulations with various observations, such as spatial and angular correlation functions, 
power spectra, higher-order moments, and we found reasonable agreement. To extend the 
dynamical range, we joined the results from simulation boxes ranging from 25h-i Mpc to 
500h-’ Mpc. This allowed us to fit, for instance, the observed power spectrum over almost 
two decades in wavelenght, and we could determine the scaling coefficients Ss, S, over three 
decades in the variance. The replication method we used to obtain a APM-like angular pro- 
jection has been successfully tested via the limiting magnitude shifting (although we found 
the method unsatisfactory for 6 > 10’). 

The BSI power spectrum we investigated contains, in addition to the overall normaliza- 
tion, two additional parameters, the height and the location of the break. In the double 
inflation model, the break height is connected with the ratio of the two mass parameters 
characterizing the two inflationary stages. The break scale is sensibly dependent on the 
initial value of the scalar field. In GottlSber, Miiller, Starobinsky (1991) it was argued that 
this initial value may arise naturally as a quantum fluctuation. Clearly this requires fur- 
ther elaboration. Here our aim was to show that the values of the two parameters which 
were derived from linear analysis lead to non-linear clustering properties in accordance with 
observations. 
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